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Abstract—In this paper, we propose a decomposition based
multiobjective evolutionary algorithm that extracts information
from an external archive to guide the evolutionary search for
continuous optimization problem. The proposed algorithm used
a mechanism to identify the promising regions(subproblems)
through learning information from the external archive to guide
evolutionary search process. In order to demonstrate the perfor-
mance of the algorithm, we conduct experiments to compare it
with other decomposition based approaches. The results validate
that our proposed algorithm is very competitive.

I. INTRODUCTION

Multiobjective optimization problems(MOPs) involve mul-
tiple objectives to be satisfied simultaneously. The objectives
to be optimized are usually conflicting with each other, thus
MOPs do not have a single optimal solution but rather a set of
Pareto optimal solutions, which represent the trade-off among
different objectives. Along with Pareto dominance based [1]–
[3] and performance indicator based algorithms [4], the mul-
tiobjective evolutionary algorithms based on decomposition
(MOEA/D) [5] have been widely used and investigated in
evolutionary computation community. In MOEA/D, a MOP
is decomposed into a number of single objective optimization
subproblems and then solve them in parallel. The objective
function in each subproblem can be an linear or nonlinear
weighted aggregation function of all the objective functions in
the MOP in question. Two subproblems are called neighbors
if their weight vectors are close to each other. Recent studies
show that MOEA/D is very competitive compared with other
types of multiobjective evolutionary approaches [6].

Over the recent years, many variants of MOEA/D
have been proposed to further enhance the performance of
MOEA/D [6]–[10]. For example, Li et. al [10] proposed
a variant of MOEA/D which uses adaptive weights in the
aggregation function to obtain more evenly distributed non-
dominated solution. In addition, genetic algorithm is replaced
with simulated annealing approach to prevent the search pro-
cess stuck into local optima. The hybridization of MOEA/D
with Pareto dominance based approach has been proposed
in [7], [9]. Besides the original decomposition based popula-
tion, these approaches all adopt a secondary archive that select

diversified non-dominated solutions through Pareto dominance
and diversity maintenance mechanisms. However, none of the
above work use the information in the secondary archive to
further improve MOEA/D.

From a more general perspective, multiobjective evolution-
ary algorithms(MOEAs) is a class of population-based iterative
algorithms, which generate abundant data about the search
space, problem feature and population information during the
optimization process. These information can be learned to fur-
ther improve the performance of MOEAs. For example, Chia
et. al. [11] proposed a Bayesian rule miner, and incorporated it
into Pareto dominance based MOEA to identify the promising
region in the decision space where the Pareto set is most likely
located. Their approach proves to be very effective in handling
MOP with noises while maintaining competitive in other types
of benchmark problems. Zhang et.al. [6] applied the similar
idea into the MOEA/D framework and proposed a variant
of MOEA/D based on dynamic resource allocation(MOEA/D-
DRA). In their work, the utility value for each subproblem is
calculated based on each subproblem’s historical convergence
information in each generation, then the dynamic resource allo-
cation mechanism is applied to provide different computational
effort for different subproblems based on their utility values.
MOEA/D-DRA works well on continuous MOPs and won the
CEC2009 competition due to its best performance among other
12 algorithms. However, MOEA/D-DRA only considers con-
vergence progress for each subproblem but does not consider
the diversity information for all individual subproblems during
the different phases of evolutionary optimization. Inspired by
above, we propose an adaptive mechanism to identify the
promising regions(subproblems) through learning each sub-
problem’s previous convergence and diversity performance in
the secondary archive, to further improve MOEA/D. The main
contributions of this paper are as follows.

∙ An external archive is adopted to store diversified non-
dominated solutions for MOEA/D. An adaptive learn-
ing mechanism is proposed to identify the promising
regions(subproblems) through mining their historical
performance in the secondary archive. The adaptive
learning mechanism is the first approach to learn both
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the convergence and diversity information during the
optimization process in MOEA/D.

∙ We conduct experiments to compare the proposed ap-
proach with other three decomposition based MOEAs
on ZDT test instances. Experimental results show the
proposed aMOEA/DD outperforms other compared
approaches on most test instances. In addition, the
effects of the adaptive learning mechanism are also
investigated and discussed in the paper.

The rest of this paper is organized as follows. Section II
revisits basic concepts of multi-objective optimization(MOP).
Section III introduces the MOEA/D and its several variants.
The following Section IV mainly describes the proposed adap-
tive MOEA/D based on external archive(aMOEA/DD). Exper-
imental settings and performance indicators for MOEAs are
detailed in Section V. In Section VI, we conduct experiments
and present the results to compare our proposed algorithm with
three decomposition based MOEAs.

II. MULTI-OBJECTIVE OPTIMIZATION PROBLEM

A. Multi-objective Optimization Problem revisited

A generic multiobjective optimization problem (MOP) can
be stated as follows:

maximize 𝐹 (𝑥) = (𝑓1(𝑥), . . . , 𝑓𝑚(𝑥)) (1)
subject to 𝑥 ∈ Ω

where Ω is the decision space, 𝐹 : Ω → 𝑅𝑚 consists of 𝑚
real-valued objective functions. The attainable objective set is
{𝐹 (𝑥)∣𝑥 ∈ Ω}. In the case when Ω is a finite set, (1) is called
a discrete MOP.

Let 𝑢, 𝑣 ∈ 𝑅𝑚, 𝑢 is said to dominate 𝑣, denoted by 𝑢 ≻ 𝑣,
if and only if 𝑢𝑖 ≥ 𝑣𝑖 for every 𝑖 ∈ {1, . . . ,𝑚} and 𝑢𝑗 > 𝑣𝑗
for at least one index 𝑗 ∈ {1, . . . ,𝑚}Ġiven a set 𝑆 in 𝑅𝑚, a
point in it is called non-dominated in 𝑆 if no other point in 𝑆
can dominate it. A point 𝑥∗ ∈ Ω is Pareto-optimal if 𝐹 (𝑥∗)
is non-dominated in the attainable objective set. 𝐹 (𝑥∗) is then
called a Pareto-optimal (objective) vector. In other words, any
improvement in one objective of a Pareto optimal point must
lead to deterioration to at least another objective. The set of
all the Pareto-optimal points is called the Pareto set (PS) and
the set of all the Pareto-optimal objective vectors is the Pareto
front (PF) [12]. In many real life applications, the PF is of
great interest to decision makers for understanding the tradeoff
nature of different objectives and selecting their final solutions.

B. MOEA/D and its variants

This section is dedicated to introducing MOEA/D and its
state-of-art variants.

1) MOEA/D: The decomposition based frame-
work(MOEA/D) was proposed in [5], and currently, the
decomposition based framework is proved to be an efficient
method to solve multi-objective problems(see [5]). This
framework decomposes an MOP into several single-objective
subproblems, which are defined by a scalar function with
different weight vector; and all the subproblems are optimized
concurrently. Each subproblem has a single elite solution
with respect to its own weight vector. To generate a new

solution for each subproblem, parents are selected from its
neighboring subproblems. If a better solution is generated by
genetic operations, the current solution is replaced with the
newly generated one. This solution replacement mechanism
is applied to not only the current subproblem but also its
neighboring subproblems. That is, a good solution has a
chance to survive at multiple subproblems. The diversity of
solutions is maintained implicitly by the use of a number
of weight vectors guiding different search directions in
MOEA/D. High search ability of decomposition based
approach on various test functions and real-world problems
has been demonstrated in the literature [13]–[19].

2) MOEA/DD: To further improve MOEA/D, an external
archive has been adopted; and Pareto dominance and crowding
distance method have been applied to save the diversified
non-dominated solutions for this archive. For example, cai
et.al [9] proposed a variant of MOEA/D with domination
archive(MOEA/DD) to tackle multiobjective next release prob-
lem. Similarly, Mei et.al. [7] proposed hybrid MOEA/D with
NSGAII [3] to tackle the multi-objective capacitated arc rout-
ing problem.

3) MOEA/D-DRA: In [6], Zhang et.al proposed a util-
ity based selection mechanism to enhance the efficiency of
MOEA/D, which is termed MOEA/D with dynamical resource
allocation (MOEA/D-DRA). MOEA/D-DRA calculate each
subproblem’s previous performance in terms of local con-
vergence(termed utility) and use it to dynamically allocate
computational efforts to subproblems. MOEA/D-DRA is the
winner of CEC2009 competition in multiobjective continues
optimization problems among other 12 algorithms.

III. MOTIVATION OF OUR WORK

In this paper, we present an improved MOEA/D, which
is termed aMOEA/DD, to tackle multiobjective continuous
optimization problems. Our proposed algorithm maintains both
a decomposition population and an external archive applied
with domination based methods(such as non-dominated sorting
and crowding distance methods in NSGAII [3]). Analogous
to the population of subproblems in the decomposition based
MOEAs, the decomposition population consists the best solu-
tions in different subproblems. The external archive is used to
store the diversified non-dominated solutions found by all sub-
problems during the entire search process. After that, an adap-
tive learning mechanism is applied to learn the historical con-
vergence and diversity information from the external archive,
in order to identify the promising regions(subproblems). Con-
sequently, the identified promising subproblems are inclined to
be allocated more computational resources. This is based on
our idea that the subproblems that generate more diverse non-
dominated solutions survived in the final domination archive
are more likely to be the promising regions, which should be
given more intensive search.

IV. 𝑎MOEA/DD

A. Framework of aMOEA/DD

This paper proposes an improved MOEA/D based On an
adaptive mechanism(aMOEA/DD). In aMOEA/DD, a MOP is
originally decomposed into a number of subproblems by the
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weighted sum approach. To be more specific, the objective
function of a subproblem can be stated as

𝑔𝑤𝑠(𝑥∣𝝀) =
𝑛∑

𝑖=1

𝜆𝑖𝑓𝑖(𝑥) (2)

where F(𝑥) = (𝑓1(𝑥), . . . , 𝑓𝑖(𝑥), . . . , 𝑓𝑛(𝑥)) is the ob-
jective vector to be minimized in instance and 𝝀 =
(𝜆1, . . . , 𝜆𝑖, . . . , 𝜆𝑛) is the weight vector that is used to
decompose a subproblem of MOCOP. Suppose there are 𝑁 u-
niformly distributed weight vectors 𝝀1, . . . ,𝝀𝑵 , thus instance
is decomposed into corresponding 𝑁 subproblems. The above
eq.(2) assigns the jth subproblem its own objective function
𝑔𝑤𝑠(𝑥∣𝝀𝑗).

aMOEA/DD maintains a decomposition population 𝐴1
and an external archive 𝐴2 to save non-dominated solutions
throughout the optimization process. The decomposition pop-
ulation and the archive are of size 𝑁 . The pseudocode of
aMOEA/DD is presented in Algorithm 1. At each generation,
𝑁 subproblems are selected to pursue the search. The selection
of subproblems are based on an adaptive mechanism which
will be explained later. For the ith selected subproblem, two
parents are selected from the 𝑇 neighboring subproblems of
it. Crossover and mutation operators are the same as in [5].
By repeating this procedure for 𝑁 selected subproblems, an
offspring population 𝑌 = {𝑦1, . . . , 𝑦𝑁} is generated. This
newly generated offspring population 𝑌 is used to update both
decomposition and an external archives. For the decomposition
population 𝐴1, the optimal solution for each subproblem is
updated based on eq.(2) above. For the external archive 𝐴2,
solutions 𝑌 is merged with solutions 𝑋 ′ in 𝐴2, and then
the combined population is sorted by the fast non-dominated
sorting method and the crowding distance procedure in NS-
GAII [3]. The best 𝑁 solutions are kept to replace solutions
𝑋 ′ in domination archive 𝐴2.

During the search process, some subproblems may con-
tribute to multiple non-dominated solutions while others may
contribute none to the Pareto approximation. The subprob-
lems that contribute more non-dominated solutions can be
considered as more promising regions(subproblems). In order
to encourage intensive search for the promising subproblems,
aMOEA/DD adopts an adaptive mechanism to select the
promising subproblems that are more likely to generate non-
dominated solutions. This is implemented based on learn-
ing subproblems’ historical performance of generating non-
dominated solutions in the external archive 𝐴2.

The selection mechanism based on adaptive learning can
be described as follows. In Step2b of Algorithm 1, a certain
fixed number of pervious generation, defined as the learning
generations(LGs), are considered to calculate the probability
of the promising regions for each subproblem based on the its
previous performance of generating non-dominated solutions
in the domination archive. Consequently, based on this proba-
bility, a subproblem will be chosen out of 𝑁 subproblems

Algorithm 1:aMOEA/DD
Input:

1) test instance;
2) a stopping criterion;
3) 𝑁 : the number of decomposed subproblem-

s(the size of decomposition archive 𝐴1 and the
size of domination archive 𝐴2;

4) a uniform spread of 𝑁 weight vectors:
𝝀1, . . . ,𝝀𝑵 ;

5) the size of the neighborhood of each subprob-
lem, denoted as 𝑇 ;

Output: A set of non-dominated solutions 𝑋 ′;
Step1: Initialization:

a) Decompose the original test instance into
a set of subproblems {𝐴1, . . . , 𝐴𝑁} with
𝝀1, . . . ,𝝀𝑵 .

b) Initialize a population 𝑋 = {𝑥1, . . . , 𝑥𝑁} ran-
domly in 𝐴1.

c) Set 𝑋 ′ = 𝑋 in 𝐴2.
d) Compute the Euclidean distance between any

two weight vectors and obtain 𝑇 closest weight
vectors to each weight vector. For each 𝑖 =
1, . . . , 𝑁 , set 𝐵(𝑖) = {𝑖1, . . . , 𝑖𝑇 }, where
𝜆𝑖1 , . . . , 𝜆𝑖𝑇 are the 𝑇 closest weight vectors
to 𝜆𝑖.

Step2: Search for new solutions
a) Set 𝑗 = 1.
b) Adaptively select a subproblem 𝐴𝑖 for search

based on eq. 3 and 4.
d) Randomly select two indexes 𝑘 and 𝑙 from

𝐵(𝑖).
e) Apply one point crossover and bit-wise muta-

tion operators to 𝑥𝑘 and 𝑥𝑙 to generate 𝑦𝑖 for
subproblem 𝐴𝑖.

f) Set 𝑗 → 𝑗 + 1. If 𝑗 ≤ 𝑁 , go back to Step 2b.
Step3: Update Solutions

/* update optimal solution 𝑥(𝑖) of 𝑖th subprob-
lem in decomposition archive*/

a) Set 𝑖 = 1.
b) For each 𝑗 ∈ 𝑦𝑗 , if 𝑔𝑤𝑠(𝑦𝑗 ∣𝜆) ≤ 𝑔𝑤𝑠(𝑥𝑖∣𝜆),

then set 𝑥𝑖 = 𝑦𝑗 .
c) Set 𝑖→ 𝑖+ 1. If 𝑖 ≤ 𝑁 , go back to Step 3b.

/* update domination archive*/
d) Merge 𝑌 = {𝑦1, . . . , 𝑦𝑁} with 𝑋 ′ in 𝐴2 to ob-

tain 𝑍 = 𝑋 ′∪𝑌 ; sort the merged population 𝑍
with fast non-dominated sorting and crowding
distance approach of NSGA-II [3] and the best
𝑁 solutions replace 𝑋 ′ in 𝐴2.

Step4: Termination
1) If stopping criteria are satisfied, terminate the

algorithm. Otherwise, go to Step 2.

to generate new solutions.At each generation 𝐺 > 𝐿𝐺𝑠−1, the
probability of choosing the 𝑖th(𝑖 = 1, 2, . . . , 𝑁 ) subproblem
is updated by

𝑝𝑟𝑜𝑏𝑖,𝐺 =
𝐷𝑖,𝐺∑𝑁
𝑖=1 𝐷𝑖,𝐺

(3)
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where

𝐷𝑖,𝐺 =

∑𝐺−1
𝑔=𝐺−𝐿𝐺𝑠 𝑑𝑠𝑖,𝑔∑𝐺−1

𝑔=𝐺−𝐿𝐺𝑠 𝑡𝑜𝑡𝑎𝑙𝑖,𝑔
+ 𝜖, (𝑖 = 1, 2, . . . , 𝑁 ;𝐺 > 𝐿𝐺𝑠)

(4)
𝐷𝑖,𝐺 represents the proportion of non-dominated solutions
generated by 𝑖th subproblem within the previous 𝐿𝐺𝑠. 𝑑𝑠𝑖,𝑔
is the number of non-dominated solutions generated by 𝑖th
subproblem and 𝑡𝑜𝑡𝑎𝑙𝑖,𝑔 is the total number of non-dominated
solutions generated by all subproblems within the previous
𝐿𝐺𝑠. The non-dominated solutions mentioned above are the
solutions that successfully enter the domination archive 𝐴2.

A small constant value 𝜖 = 0.001 is used to avoid the
possible zero selection probabilities. We also normalize 𝐷𝑖,𝐺

in order to make the summation of 𝐷𝑖,𝐺 for all subproblems
into 1.

V. EXPERIMENTS

A. Parameter Setting

In this experiment, we consider ZDT benchmark problems
to test our proposed algorithm. All the compared algorithms
are terminated after 50000 function evaluations. The popu-
lation size is set to 200, and the neighborhood size defined
between subproblems is set to 10. For the parameter of LGs
in aMOEA/DD, we conduct a sensitivity test. As shown in Fig.
1, aMOEA/DD has the best performance when the value LPs
is equal to 10, which is what we’ve adopted in this paper.
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Fig. 1: Sensitivity Test for Parameter LGs

B. Performance Indicators

The performance of a MOEA is usually evaluated in two
aspects. First, the obtained non-dominated set should be as
close to the true Pareto front as possible. This aspect is usually
called convergence. Second, the obtained non-dominated set
should be distributed as diversely and uniformly as possible.
This aspect is usually called diversity. There has been various
metrics designed to reflect either one aspect or both of them

to evaluate the performance of a MOEA [20]. In this paper,
we adopt two most well-known performance indicators IGD-
metric(𝐼𝐺𝐷) [21]and H-metric(𝐼𝐻 ) [22], both of which is able
to reflect performance in the two respects at the same time.

VI. EXPERIMENTAL RESULTS

A. Comparison with other decomposition based MOEA

We compares aMOEA/DD with MOEA/D [5],
MOEA/DD [9] and MOEA/D-DRA [6] on ZDT benchmark
functions. All algorithms run 30 times. The mean and
standard deviation of IGD-metric after running each compared
algorithm is shown in table I. In addition, t-test between the
best results and the second best results for each benchmark
function is conducted and presented in table I. If the result
obtained by aMOEA/DD is not the best, then we conduct
t-test between the best obtained result and the result obtained
by aMOEA/DD. From table 1, we can see that both mean and
standard deviation of IGD-metric obtained by aMOEA/DD
for ZDT1, ZDT2 and ZDT4 has the smallest value among all
the compared algorithms with statistical significance, which
indicates that our proposed aMOEA/DD outperforms other
algorithms on these functions. For function ZDT6, MOEA/D
is slightly better than aMOEA/DD, although the result is not
statistically significant. For ZDT3, MOEA/DD is significantly
better than aMOEA/DD and aMOEA/DD outperforms other
two algorithms.

The mean and standard deviation of H-metric value are
presented in table II, as well as t-test results. We use (1;1) as
the reference point. As we can see in table II, the results in
terms of H-metric is consistent with that in terms of IGD. For
ZDT1, ZDT2 and ZDT4, the mean of H-metric obtained by
aMOEA/DD is larger than that of other algorithms, while the
standard deviation is smallest for aMOEA/DD. In other word,
aMOEA/DD is the most efficient and stable compared with
other approaches on these benchmark functions.

Fig.2 present the convergence of each compared algorithm
in terms of average IGD-metric value. All the results indicate
that aMOEA/DD converges much faster than other algorithms
in terms of IGD metric on ZDT1, ZDT2, ZDT3 and ZDT6.

B. aMOEA/DD vs. MOEA/D-DRA

aMOEA/DD outperforms MOEA/D-DRA with statistical
significance on all the ZDT benchmark functions except for
ZDT6 in terms of IGD; and ZDT3, ZDT6 in terms of H-metric.
In addition, we adopt box-plot to compare aMOEA/DD and
MOEA/D-DRA in terms of IGD, as show in fig.3. The above
observations all confirm that aMOEA/DD is very competitive
compared with MOEA/D-DRA.

VII. THE EFFECTS OF ADAPTIVE LEARNING MECHANISM

In this paper, an adaptive learning mechanism is proposed
in aMOEA/DD. The adaptive learning mechanism aims to
identify the promising regions(subproblems) through learning
the search information based on each subproblem’s previous
performance, and then use the learned information to guide
the selection of subproblems. This section is dedicated to
validating the effectiveness and efficiency of this adaptive
learning mechanism.
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Fig. 2: Convergence graphs in term of mean of IGD obtained by three approaches on (a) ZDT1 (b) ZDT2 (c) ZDT3 (d) ZDT6 .

TABLE I: Mean and standard deviation of IGD-metric values obtained by four algorithms on ZDT instance

instance 𝐼𝐺𝐷 t-test
P=200,n=10 aMOEA/DD MOEA/DD MOEA/D MOEA/D-DRA h p

zdt1 0.0061(0.0019) 0.0127(0.0032) 0.0117(0.0032) 0.0089(0.0023) 1 8.7025e-009
zdt2 0.0047(0.0017) 0.0077(0.0019) 0.0070(0.0018) 0.0086(0.0021) 1 1.0992e-005
zdt3 0.0034(2.0412e-4) 0.0032(2.4770e-4) 0.0050(5.8801e-5) 0.0052(2.3420e-4) 1 4.7508e-004
zdt4 0.0161(0.0214) 0.0680( 0.0822) 0.1158(0.1182) 0.1047(0.0728) 1 0.0019
zdt6 0.0034(0.0028) 0.0047(0.0030) 0.0029(0.0013) 0.0030(0.0009) 0 0.3471

TABLE II: Mean and standard deviation of H-metric values obtained by three algorithms on ZDT instance.

instance ℎ𝑦𝑝𝑒𝑟𝑣𝑜𝑙𝑢𝑚𝑒 t-test
P=200,n=10 aMOEA/DD MOEA/DD MOEA/D MOEA/D-DRA h p

zdt1 0.6571(0.0029) 0.6470( 0.0046) 0.6486(0.0045) 0.6499( 0.0037) 1 5.4118e-011
zdt2 0.3246(0.0031) 0.3186(0.0033) 0.3201(0.0033) 0.3184(0.0031) 1 3.5699e-009
zdt3 0.1915(0.0013) 0.1907(0.0011) 0.1932( 0.0013) 0.1924(0.0013) 1 1.6908e-007
zdt4 0.5947(0.1117) 0.5232(0.2294) 0.4711(0.1986) 0.4114(0.1906) 1 0.0124
zdt6 0.3176(0.0298) 0.3250(0.0040) 0.3251(0.0040) 0.3271(0.0016) 0 0.1985
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Fig. 3: Comparison of aMOEA/DD and MOEA/D-DRA in terms of IGD metric for a) ZDT1, b) ZDT2, c) ZDT4, d) ZDT6.
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Fig. 4: Contributions of subproblems to the domination archive over 10 generations at the final stage of the optimization process
for ZDT instances.(a) ZDT1 (b) ZDT2 .

The motivation of the adaptive learning mechanism is based
on our hypothesis that different subproblems give different
contributions to non-dominated set stored in the external
archive. Therefore, we conduct experiments to demonstrate
the distributions of counts of non-dominated solutions various
subproblems contribute to the external archive over 10 gener-
ations at the final stage of the optimization process for ZDT1
and ZDT2, as shown in Fig.4. Overall, different subproblems
have very different contributions to the external archive, which
supports our hypothesis that adaptive learning mechanism is
based on. It is clear to see that the contributions of non-
dominated solutions of ZDT1 in the external archive is more
uniform than ZDT2.

VIII. CONCLUSION

This paper mainly analyzed decomposition based ap-
proaches and proposed a variant of MOEA/D based on
an adaptive learning mechanism. The proposed approach,
aMOEA/DD, is compared with MOEA/D and its variants
on ZDT benchmark functions. Experimental results show the
proposed aMOEA/DD give the best performance among all
the compared approaches.

Further work includes investigation of the proposed ap-
proach for discrete optimization problem. It is also interesting
to use other techniques to manage the external domination
archive, besides non-dominated sorting and crowding distance
in NSGA-II. Moreover, we also intend to extend aMOEA/DD
to tackle more challenging multi-objective optimization prob-
lems, such as many objective problems and MOPs with com-
plex constraints.
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